Nukleophile Substitution (S_N)

Edukte: (1) Alkohole* mit Halogenwasserstoffsäuren // (2) Halogenalkane mit Basen // allgemein: Stoffe, deren Moleküle C-Atome mit elektronegativeren Substituenten haben (z.B. auch (3) Alkoholate)

Q

Reaktionsbedingungen: sauer oder alkalisch

Produkte: (1) Alkohole, (2) Halogenalkane, (3) Ether

Reaktionsgleichung: R-Nu1 + Nu2 => R-Nu2 + Nu1 (Nu= Nukleophil)

* Bei **Alkoholen**: Die Hydroxylgruppe ist eine schlechte Abgangsgruppe. Durch **Protonierung** wird sie zu $-OH_2^+$ (Oxoniumion) und geht dann als H_2O leichter ab. Daher muss eine Säure verwendet werden.

Mechanismus:

S_N1-Mechanismus (monomolekularer Mechanismus):

Zunächst erfolgt die Abspaltung des abgehenden Nukleophils (geschwindigkeitsbestimmender Schritt), wodurch ein Carbokation entsteht. Dann folgt die Addition des angreifenden Nukleophils. Beim Vorliegen von vier verschiedenen Substituenten am betroffenen C-Atom entstehen zwei Spiegelbildisomere.

S_N2-Mechanismus (bimolekularer Mechanismus):

Abspaltung und Addition erfolgen gleichzeitig. Beim S_N2 Mechanismus entsteht bei einem Produkt mit vier verschiedenen Substituenten nur eines der beiden Spiegelbildisomere. Der Angriff erfolgt von der Rückseite des abgehenden Nukleophils. Die Reaktion verläuft also **stereospezifisch**.

Es ist nicht für jede Reaktion bekannt, nach welchem der beiden Mechanismen sie abläuft. Es gibt jedoch drei Faktoren, die den Verlauf beeinflussen:

Sterische Effekte: Raumgreifende Substituenten (z.B. mehrere Alkylgruppen) und raumgreifende Nukleophile begünstigen den S_N1-Mechanismus.

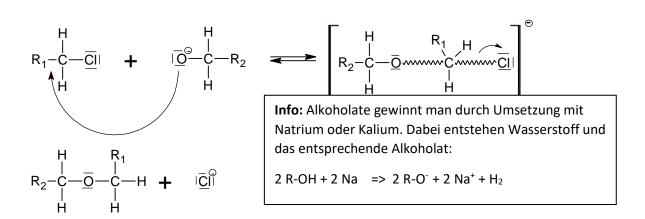
Induktive Effekte: Das beim S_N1-Mechanismus entstehende Carbokation ist umso stabiler, je weniger die positive Ladung am C-Atom lokalisiert ist.

Substituenten mit +I-Effekt verstärken die positive Ladung und destabilisieren so das Carbokation. Der $S_N 2$ -Mechanismus wird begünstigt.

Substituenten mit -I-Effekt stabilisieren das Carbokation und erhöhen so die Wahrscheinlichkeit für einen Verlauf nach S_N1.

Lösungsmittel: Polar-protische Lösungsmittel begünstigen den Verlauf nach $S_N 1$, da sie Ionen besonders gut stabilisieren.

Beispiele für Mechanismen:


tertiärer Alkohol mit Salzsäure nach S_N1

primärer Alkohol mit Halogenwasserstoffsäure nach $S_N 2$

tertiäres Halogenalkan mit Lauge nach S_N1

primäres Halogenalkan mit primärem Alkoholation nach S_N2

Merkhilfe S_N1 (monomolekular)

(große Reste (tertiär), +I)

- 0. (Protonierung bei Alkoholen)
- 1. Abspaltung (=> Carbokation)
- 2. Addition

Merkhilfe S_N2 (bimolekular)

(kleine Reste (primär, -I)

- 0. (Protonierung bei Alkoholen)
- 1. Abspaltung + Addition

