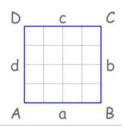

Flächeninhalt und Umfang spezieller Vierecke

Die Gleichungen zur Berechnung von Flächeninhalt und Umfang spezieller Vierecke lassen sich einfacher merken, wenn man sich vor Augen führt, wie sie zustande kommen.

Rechteck

 $A = a \cdot b$

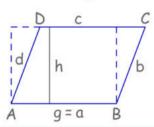

U=2(a+b)

Die a Flächenelemente längs der Seite a muss ich bmal übereinanderlegen, um das Rechteck komplett zu füllen.

Der Umfang ergibt sich aus der Summe der vier Seiten. Da a=c und b=d, folgt:

a+b+c+d=a+b+a+b=2(a+b).

Quadrat

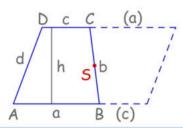

A = a

U = 4a

Da im Quadrat alle vier Seiten gleich lang sind, erhalten wir die Gleichungen für Flächeninhalt und Umfang, indem wir in den Gleichungen für das Rechteck die Seiten b und a gleichsetzen:

$$A = \alpha \cdot b = \alpha \cdot \alpha = \alpha^2$$
 $U = 2(\alpha + b) = 2(\alpha + \alpha) = 2 \cdot 2\alpha = 4\alpha$

Parallelogramm

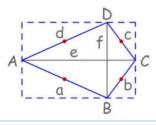

 $A = q \cdot h$

U=2(a+b)

Im Parallelogramm kann ich rechts ein Dreieck senkrecht abschneiden und auf der linken Seite anlegen. Dann erhalte ich ein Rechteck mit den Seitenlängen g (Grundseite) und h (Höhe).

Da auch hier jeweils zwei Seiten gleich lang sind, berechnet sich der Umfang wie im Rechteck.

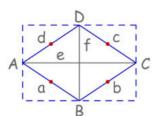
Trapez



 $A = \frac{a+c}{2} \cdot h$

U=a+b+c+d

Das Trapez kann ich im Punkt S spiegeln und rechts noch einmal anlegen. Dies ergibt ein Parallelogramm mit der Grundseitenlänge a+c, das den doppelten Flächeninhalt hat wie das Trapez. Die Hälfte davon ist also der Flächeninhalt des Trapezes.

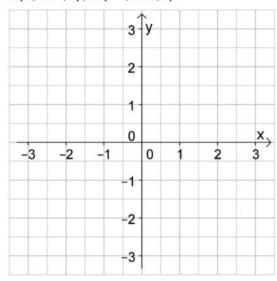

Der Umfang ist gleich der Summe der Seitenlängen.

 $A = \frac{e \cdot f}{2}$

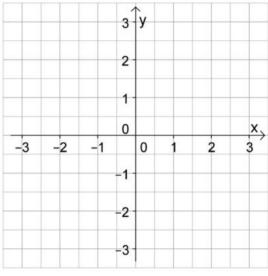
U=2(a+b)

Das Drachenviereck wird durch die Diagonalen e und f in vier Dreiecke zerlegt, die ich durch Punktspiegelung zu Rechtecken ergänzen kann. Dann erhalte ich ein Rechteck mit den Seitenlängen e und f. Die Hälfte von dessen Flächeninhalt entspricht dem des Drachenvierecks.

$$A = \frac{e \cdot f}{2}$$

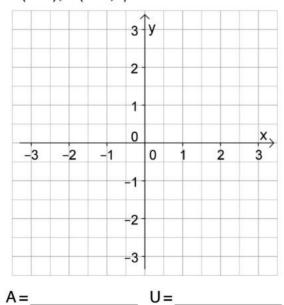

U=4a

Die Herleitung der Formel für den Flächeninhalt erfolgt analog zum Drachenviereck.

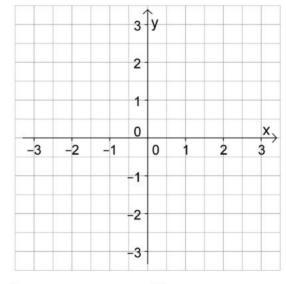

Da alle vier Seiten gleich lang sind, vereinfacht sich die Berechnung des Umfangs entsprechend.

• Aufgabe 1: Konstruiere die Vierecke mit den angegebenen Eckpunkten. Berechne Flächeninhalt und Umfang.

a) A(-2,51-2); B(1,51-2); C(2,512,5); D(-1,512,5)



b) A(-2,51-0,5); B(1,51-3); C(31-0,5); D(1,512)



A=___ U= A=___ U=

c) A(-310); B(01-2,5); C(310); D(012,5)

d) A(-2,51-2,5); B(21-2); C(211); D(-2,512,5)

A = U=

• Aufgabe 2: Berechne die fehlenden Größen des Rechtecks.

	а	b	С	d	Α	U
a)	3,5 cm	5 cm				
b)				12 m		54 m
c)		8 dm			2 m ²	

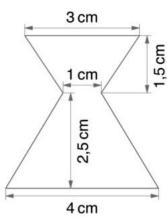
• Aufgabe 3: Berechne die fehlenden Größen des Parallelogramms.

	g	ь	h	Α	U
a)	7 cm	5,5 cm	5 cm		
b)		27 m	18 m	810 m ²	
c)	5 dm			1 m ²	3,5 m

• Aufgabe 4: Berechne die fehlenden Größen des Trapezes.

	a	Ь	C	d	h	A	U
a)	10,1 dm	5,8 dm	5 dm	4,1 dm	4 dm		<u> </u>
b)			3 cm	4 cm	4 cm	18 cm ²	18 cm
c)		65 dm	86 dm	61 dm	6 m		26,2 m

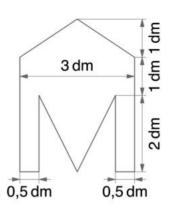
• Aufgabe 5: Berechne die fehlenden Größen des Drachenvierecks.


	а	b	e	f	A	U
a)	8,9 cm	8,2 cm	5,7 cm	16 cm		
b)	101 m		120 m		2400 m ²	260 m
c)		85 dm	a	18,2 m	65,52 m ²	39,2 m

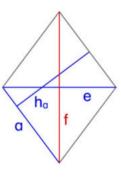
• Aufgabe 6: Berechne die fehlenden Größen der Raute.

	а	e	f	А	U
a)	8,5 m	15,4 m	7,2 m		
b)		16 cm		240 cm ²	68 cm
c)	4,1 dm		18 cm	7,2 dm ²	

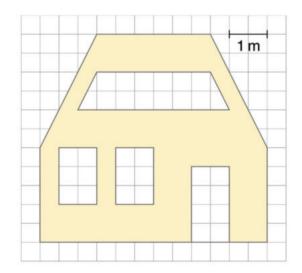
Aufgabe 7: Berechne den Inhalt der zusammengesetzten Flächen.


a)

b)


c)

A=	


A =

 Aufgabe 8: In einer Raute sind die Seite a mit 10 cm, die Höhe h_{α} mit 9,6 cm und die Diagonale e mit 12 cm gegeben. Kannst du die Länge der Diagonalen f berechnen, ohne die Figur zu zeichnen? Tipp: Überlege, welche Formel zur Berechnung des Flächeninhaltes du neben der hier gezeigten aufgrund der Teilmengenbeziehungen der speziellen Vierecke noch verwenden kannst.

f =

A=

 Aufgabe 9: Die Fassade eines Hauses soll gestrichen werden. Der Malerbetrieb berechnet 15€ pro Quadratmeter.

Wie hoch sind die Gesamtkosten für den Anstrich?

Entnimm die Maße der Zeichnung.

Antwort: